
www.elsevier.com/locate/ijhmt

International Journal of Heat and Mass Transfer 50 (2007) 1097–1105
The effect of wall conduction for the extended Graetz problem
for laminar and turbulent channel flows

B. Weigand a,*, G. Gassner b

a Institut für Thermodynamik der Luft- und Raumfahrt, Universität Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany
b Institut für Aero-und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart, Germany

Received 29 November 2005; received in revised form 23 June 2006
Available online 30 October 2006
Abstract

Axial heat conduction effects within the fluid can be important for duct flows if either the Prandtl number is relatively low (liquid
metals) or if the dimensions of the duct are small (micro heat exchanger). In addition, axial heat conduction effects in the wall of the
duct might be of importance. The present paper shows an entirely analytical solution to the extended Graetz problem including wall
conduction (conjugate extended Graetz problem). The solution is based on a selfadjoint formalism resulting from a decomposition of
the convective diffusion equation into a pair of first order partial differential equations. The obtained analytical solution is relatively sim-
ple to compute and valid for all Péclet numbers. The analytical results are compared to own numerical calculations with FLUENT and
good agreement is found.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The prediction of the heat transfer characteristics in pipe
and channel flows is of theoretical interest and practical
importance. Heat transfer of hydrodynamically fully devel-
oped pipe and channel flows has therefore attracted a lot of
researchers in the past. Normally, the effect of streamwise
conduction in the flow on the heat transfer can be neglected.
The classical Graetz problem deals with heat transfer in the
thermal developing region of the flow under such condi-
tions. Good reviews on this subject for laminar and turbu-
lent duct flows can be found in [1,2]. However, if the Péclet
number (PeD = ReDPr) in the flow is small, axial heat con-
duction in the fluid becomes important. This is the case, for
example, in compact heat exchangers where liquid metals
are used as the working fluids or in micro heat exchangers,
where the overall dimensions are very small. In the past,
many investigations have been carried out which dealt with
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the solution of the extended Graetz problem (the Graetz
problem considering axial heat conduction in the fluid)
for thermally developing laminar flow in a pipe or in a par-
allel plate channel. Extensive literature reviews on this sub-
ject are given in [1,3]. Many of the solutions cited in [1,3] for
the extended Graetz problem are based on the fundamental
assumption that the solution of the problem has the same
form of the series solution as the Graetz problem without
axial heat conduction in the fluid. This approach results
in a non-selfadjoint eigenvalue problem with eigenvalues
that could, at least in principle, be complex and eigenvectors
that could be incomplete. Several strategies have been
developed in the past to overcome this problem. Hsu [4],
for example, constructed the solution of the problem from
two independent series solutions for x < 0 and x > 0. Both
the temperature distribution and the temperature gradient
were then matched at x = 0 by constructing a pair of ortho-
normal functions from the non-orthogonal eigenfunctions
by using the Gram–Schmidt-orthonormalization proce-
dure. Hence this method is clearly plagued with the
uncertainties arising from an expansion in terms of eigen-
functions and eigenvalues belonging to a non-selfadjoint
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Nomenclature

a thermal diffusivity (m2/s)
cp specific heat at constant pressure (J/(kg K))
D hydraulic diameter, D = 4h (m)
d wall thickness (m)
~f , ~S vectors (–)
h distance between centreline and wall (m)
k thermal conductivity (W/(mK))
L
�

matrix operator (–)
l1 half length of the heated zone (m)
NuD Nusselt number based on the hydraulic diameter

(–)
Pr Prandtl number (–)
Peh, PeD Péclet number based on h and D (–)
Prt turbulent Prandtl number (–)
Reh, ReD Reynolds number based on h and D (–)
T temperature (K)
T0 uniform temperature for x ? �1 (K)

T1 elevated outer wall temperature for �l1 < x < l1
(K)

Tb bulk-temperature (K)
u axial velocity (m/s)
u0 axial mean velocity (m/s)
x, y coordinates (m)

Greek symbols

ehx, ehy eddy diffusivity (m2/s)
em eddy kinematic viscosity (m2/s)
q density (kg/m3)
kj eigenvalue (–)
H dimensionless temperature (–)
m kinematic viscosity (m2/s)
R axial energy flow (–)
~Uj eigenfunction (–)
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operator. However, Papoutsakis et al. [5] showed that it is
possible to produce an entirely analytical solution to the
extended Graetz problem for Dirichlet boundary condi-
tions. Their solution is based on a selfadjoint formalism
resulting from a decomposition of the convective diffusion
equation into a pair of first order partial differential equa-
tions. In addition, several investigations have been carried
out in the past concerning the extended Graetz problem
in a parallel plate channel. Deavours [6] presented an ana-
lytical solution for the extended Graetz problem by decom-
posing the eigenvalue problem for the parallel plate channel
into a system of ordinary differential equations for which he
proved the orthogonality of the eigenfunctions. There are
also several numerical investigations which deal with the
extended Graetz problem for laminar flow in a pipe or a
parallel plate channel, see [1–3]. Axial heat conduction
might also be important for turbulent internal flows, if the
Prandtl number is sufficiently small. Lee [7] studied the
extended Graetz problem in turbulent pipe flow. He found
that for Péclet numbers below 100, axial heat conduction in
the fluid becomes important in the thermal entrance region.
Lee used the method of Hsu [4] to obtain a series solution
for the problem. Weigand [8] extended the method of Pap-
outsakis et al. [5] to solve the extended Graetz problem for
turbulent flow inside a pipe and a parallel plate channel.
Weigand et al. [9] investigated numerically the extended
Graetz problem in a parallel plate channel with piecewise
constant wall temperature boundary conditions. They used
different turbulence models for calculating the turbulent
heat flux. Their investigation showed that the normally used
assumption that the eddy diffusivity in axial and normal
direction is the same is correct for the range of parameters
under investigation. The effect of a piecewise changing wall
heat flux or wall temperature has been analytically studied
by Weigand et al. [10] and Weigand and Lauffer [11].
Despite the large amount of work, which has been done
on the extended Graetz problem for laminar and turbulent
duct flows, very little investigations are known which study
analytically the effect of conduction in the wall on the heat
transfer in a duct. This is because of the difficulties, which
are present in this case, to develop an analytical solution
for the problem. Studies by Mori et al. [12,13] and by Gue-
des and Özisik [14] for example have taken into account
axial conduction in the wall, but not in the fluid. A work
by Yin and Bau [15] considered axial heat conduction in
the wall as well as in the fluid for a laminar flow in a parallel
plate channel. A complicated analysis has been presented,
where an infinite set of algebraic equations had to be solved.
In addition, the above mentioned paper used a boundary
condition at the position where the jump in the outer wall
temperature occurred. The constants in the solution were
then computed in the sense of weighted residuals. As it is
well known, it is highly questionable to prescribe this sort
of inlet boundary condition for the extended Greatz prob-
lem (see also Weigand [3]). Studies, dealing with the analyt-
ical solution of the extended Graetz problem considering
axial heat conduction in the wall for turbulent internal flows
are not known to the best knowledge of the authors. The
purpose of the present paper is to investigate analytically
the extended Graetz problem for laminar and turbulent
flow in a parallel plate channel including axial heat conduc-
tion in the solid. The analytical solution here presented will
not be plagued with the uncertainties arising from an expan-
sion in terms of eigenfunctions and eigenvalues belonging to
a non-selfadjoint operator. Furthermore, the solution for
the ‘‘complete area” (�1 < x <1) will be presented. Thus,
the temperature field at x = 0 is part of the solution and not
a boundary condition.



Fig. 1. Geometrical configuration and coordinate system.
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2. Analysis

Fig. 1 shows the geometrical configuration and the coor-
dinate system. The characteristic length h denotes half of
the channel height. It is assumed that the flow enters the
duct with a hydrodynamically fully-developed laminar or
turbulent velocity profile and with a uniform temperature
profile for x ? �1. The outer wall temperature is main-
tained at T0 for x < �l1 and for x > +l1 and at T1 for
�l1 6 x 6 l1. The wall thickness is denoted by d. For
x ? +1 the temperature attains again the uniform tem-
perature T0. In order to obtain the temperature distribu-
tion within the solid layer and within the fluid, the energy
equation has to be solved in both regions. After this, the
solutions for both areas have to be coupled by transmission
conditions at the solid liquid interface.

2.1. Solid region (wall)

Fig. 2 shows the solid wall, together with the local coor-
dinate system x1, y1 and the boundary conditions. Assum-
ing steady-state conditions and constant properties of the
wall, the energy equation for this region simplifies to

o
2T

ox2
1

þ o
2T

oy2
1

¼ 0 ð1Þ

Eq. (1) has to be solved together with the following bound-
ary conditions
Fig. 2. Boundary conditions for the solid region.
x1 ¼ �l : T ¼ T 0

y1 ¼ 0 : T ¼ T Wðx1Þ
y1 ¼ d : T ¼ T 0; x1 < l1 and x1 > l

T ¼ T 1; �l1 6 x1 6 l1

ð2Þ

It has to be noted here that the wall temperature TW(x1) is
yet unknown. Furthermore, it is clear, that the length l has
to be taken to be very large and tends to infinity. However,
the temperature solution for the solid region has been
developed here for a finite length l in order to be able to
study the length effect on the convergence and the accuracy
of the solution and also in order to compare the obtained
analytical solution later easier to numerical results from
FLUENT, where a finite length of the channel had to be
used anyway. The solution of Eq. (1), with the boundary
conditions according to Eq. (2), can be obtained by using
the method of separation of variables. For this, it is useful
to construct the solution of two parts, one is the tempera-
ture jump at the outer wall, and one is the variable inner
surface temperature. The variable inner surface tempera-
ture has been represented by a Fourier series expression,
given by Eq. (6). After doing so, one finally obtains:

Hs ¼
X1
j¼0

aj

sinhðwj
~d~hÞ

cosðwj
~d~h�xÞ sinhðwj

~h~d�yÞ

þ
X1
j¼0

bj

sinhð�wj
~d~hÞ

cosðwj
~d~h�xÞ sinhðwj

~d~hð�y � 1ÞÞ

þ
X1
j¼0

cj

sinhð�uj
~d~hÞ

sinðuj
~d~h�xÞ sinhðuj

~d~hð�y � 1ÞÞ ð3Þ

where the definitions

Hs ¼
T � T 0

T 1 � T 0

; �x ¼ x1

d
; �y ¼ y1

d
; ~l1 ¼

l1

l
;

~l ¼ l
d
; ~d ¼ d

h
; ~h ¼ h

l
;

uj ¼ pðjþ 1Þ; wj ¼ pð2jþ 1Þ=2

ð4Þ

have been used. The constants aj are given by

aj ¼
2

wj

sinðwj
~l1Þ ð5Þ

The constants bj, cj, which appear in Eq. (3), will determine
the unknown wall temperature distribution at the inner
wall, given by

HsW ð�xÞ ¼ Hsð�x; 0Þ ¼
T W � T 0

T 1 � T 0

¼
X1
j¼0

bj cosðwj
~d~h�xÞ þ cj sinðuj

~d~h�xÞ ð6Þ

These constants have to be determined later by the trans-
mission conditions at the solid fluid interface.

2.2. Liquid region (fluid)

Under the assumptions of an incompressible flow with
constant fluid properties, negligible viscous and turbulent
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energy dissipation and hydrodynamically fully-developed
flow, the energy equation is given by

qcpuðyÞ oT
ox
¼ o

oy
k þ qcp

em

Prt

� �
oT
oy

� �

þ o

ox
k þ qcp

em

Prt

ehx

ehy

� �
oT
ox

� �
ð7Þ

with the boundary conditions

x!1 : T ¼ T 0; x! �1 : T ¼ T 0

y ¼ 0 :
oT
oy
¼ 0

y ¼ h : T ¼ T WðxÞ

ð8Þ

The velocity distribution u in Eq. (7), has been calculated
from the momentum equation for hydrodynamically
fully-developed flow. For a turbulent flow, the turbulent
shear stress has been approximated using a mixing length
model. The reader is referred to Weigand [8] for more
details. By introducing the following dimensionless
quantities:

H ¼ T � T 0

T 1 � T 0

; ~x ¼ x
h

1

Peh

; ~u ¼ u
�u0

; ~y ¼ y
h
;

Peh ¼ RehPr; Reh ¼
�u0h
m
; Pr ¼ m

a
; ~em ¼

em

m
; Prt ¼

em

ehy

ð9Þ

where u0 denotes the axial mean velocity at the entrance of
the channel, into Eqs. (7) and (8), the energy equation can
be cast into the following non-dimensional form:

~uð~yÞ oH
o~x
¼ 1

Pe2
h

o

o~x
a1ð~yÞ

oH
o~x

� �
þ o

o~y
a2ð~yÞ

oH
o~y

� �
ð10Þ

with the boundary conditions

~y ¼ 1 : H ¼ HsW ð~xÞ

~y ¼ 0 :
oH
o~y
¼ 0

lim
~x!�1

H ¼ 0; lim
~x!þ1

H ¼ 0

ð11Þ

The functions a1ð~yÞand a2ð~yÞ are given by

a1ð~yÞ ¼ 1þ Pr
Prt

~em
ehx

ehy

� �
ð12Þ

a2ð~yÞ ¼ 1þ Pr
Prt

~em ð13Þ

In the following solution process for Eq. (10) no assump-
tions are required about the functions a1ð~yÞ and a2ð~yÞ.
The solution presented here holds for arbitrary functions
a1ð~yÞ and a2ð~yÞ as long as a1 P 1, a2 P 1 which is obviously
true from the structure of Eqs. (12) and (13). Therefore, the
turbulent Prandtl number as well as the ratio ehx/ehy, used
in Eqs. (12) and (13), will be specified later. Papoutsakis
et al. [5] showed that it is possible to solve Eq. (10) for lam-
inar pipe flow (a1 = a2 =1) by decomposing the elliptic par-
tial differential equation into a pair of first order partial
differential equations. For turbulent flows this has been
shown later (Weigand [8]) by using a different inner prod-
uct between two vectors. Weigand and Lauffer [11] derived
a solution for the energy equation for a piecewise constant
wall temperature distribution. The ensuing procedure for
solving the problem here considered follows the method gi-
ven by [5,8,11] for deriving the solution of the more general
problem, considered here. Let us define a function Rð~x; ~yÞ,
which may be called the axial energy flow through a cross-
sectional area of the height ~y by

�ð~x; ~yÞ ¼
Z ~y

0

~uH� 1

Pe2
h

a1ðŷÞ
oH
o~x

� �
dŷ: ð14Þ

Introducing �, defined by Eq. (14), into the energy
equation (10) results in the following system of partial
differential equations:

o

o~x
~Sð~x; ~yÞ ¼ L

�
~Sð~x; ~yÞ ð15Þ

with the two component vector ~S and the operator L
�

given
by

~S ¼
Hð~x; ~yÞ
Rð~x; ~yÞ

� �
; L

�
¼

Pe2
h
~u

a1ð~yÞ
� Pe2

h

a1ð~yÞ
o
o~y

a2ð~yÞ o
o~y 0

2
4

3
5 ð16Þ

The boundary conditions belonging to Rð~x; ~yÞ can be de-
rived from Eqs. (8) and (14)

~y ¼ 0 : Rð~x; 0Þ ¼ 0; lim
~x!�1

R ¼ 0 ð17Þ

Before calculating the solution of Eq. (10), some interesting
details about the operator L

�
and the corresponding eigen-

value problem for Eq. (15) should be presented. The most
remarkable aspect of L

�
is that it gives rise to a selfadjoint

problem even though the original convective diffusion
operator is non-selfadjoint. This fact is of course dependent
on the sort of inner product between two vectors, which
will be used. If we define an inner product between two
vectors

~U¼
U1ð~yÞ
U1ð~yÞ

� �
; ~K¼

K1ð~yÞ
K1ð~yÞ

� �
ð18Þ

h~U;~Ki¼
Z 1

0

a1ð~yÞ
Pe2

h

U1ð~yÞK1ð~yÞþ
1

a2ð~yÞ
U2ð~yÞK2ð~yÞ

� �
d~y ð19Þ

and the following domain for ðL
�
Þ

DðL
�
Þ ¼ f~U 2 H : L

�
~U ðexists andÞ 2 H ;U1ð1Þ ¼ U2ð0Þ ¼ 0g

ð20Þ

then it can be shown that is a symmetric operator in the
Hilbert space H of interest (this means that h~U; L

�
~Ki ¼

hL�~U; ~Ki). The reader is referred to Weigand [8,3] for more
details. Thus the selfadjoint eigenvalue problem associated
with Eq. (15) is given by

L
�
~Uj ¼ kj

~Uj ð21Þ
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where ~Uj denotes the eigenvector corresponding to the
eigenvalue kj. Using the definition of the matrix operator
L
�

, given by Eq. (16), the eigenvalue problem (21) can be
rewritten in the form

Pe2
h

~uð~yÞ
a1ð~yÞ

Uj1 �
1

a1ð~yÞ
U0j2

� �
¼ kjUj1 ð22Þ

a2ð~yÞU0j1 ¼ kjUj2 ð23Þ

If Uj2 is eliminated from Eq. (22), the following eigenvalue
problem for Uj1 can be obtained (see also Weigand [3])

½a2ð~yÞU0j1�
0 þ kja1ð~yÞ

Pe2
h

� ~uð~yÞ
� �

kjUj1 ¼ 0 ð24Þ

Eq. (24) has to be solved in conjunction with the boundary
conditions

U0j1ð0Þ ¼ 0; Uj1ð1Þ ¼ 0 ð25Þ

In addition, an arbitrary normalizing condition

Uj1ð0Þ ¼ 1 ð26Þ

will be used. Eq. (24) possesses both, positive eigenvalues
kþj with the corresponding eigenvectors Uþj and negative
eigenvalues k�j with eigenvectors U�j . This is because the
operator is neither positive nor negative definite. All kj

are real because they are in fact the eigenvalues of a selfad-
joint problem. Because the two sets of eigenvectors, nor-
malized according to Eq. (26), constitute an orthogonal
basis in H (see [5,8]) an arbitrary vector~f can be expanded
in terms of eigenfunctions in the following way:

~f ¼
X1
j¼0

h~f ; ~Uji
k~Ujk2

~Ujð~yÞ ð27Þ

with the vector norm k~Ujk2 ¼ h~Uj; ~Uji. If we explicitly dis-
tinguish in Eq. (27) between positive and negative eigenvec-
tors, Eq. (27) takes the following form:

~f ¼
X1
j¼0

h~f ; ~Uþj i
k~Uþj k

2
~Uþj ð~yÞ þ

X1
j¼0

h~f ; ~U�j i
k~U�j k

2
~U�j ð~yÞ ð28Þ

Now the solution of Eq. (15) can be reconsidered. The solu-
tion of the problem ~Sð~x; ~yÞ will be obtained in the form of
the series given by Eq. (28). Therefore, the inner product
appearing in the expansion coefficients of Eq. (28) must
be determined. It can be shown [5,10,13] that

hL
�
~S; ~Uji ¼ h~S; L�

~Uji þ Uj2ð1Þgð~xÞ ð29Þ

The function gð~xÞ is in the present study given by (see also
Eq. (6))

for j~xj 6 1
~hPeh

: gð~xÞ ¼ HsW ð~xÞ ¼
X1
i¼0

bi cosðwi
~hPeh~xÞ þ ci sinðui

~hPeh~xÞ

for j~xjP 1
~hPeh

: gð~xÞ ¼ 0

ð30Þ
This means that we always assume that the function gð~xÞ
tends to zero for large j~xj. This means that the ratio l1/l
is assumed to be large. Taking the inner product of both
sides of Eq. (15) with ~Uj and using Eq. (29) one obtains

o

o~x
h~S; ~Uji ¼ kjh~S; ~Uji þ gð~xÞUj2ð1Þ ð31Þ

Eq. (31) can be solved separately for positive and negative
eigenvalues. This results in

h~S; ~U�j i ¼ C�0j expðk�j ~xÞ þ
Z ~x

�1
ðgðx̂ÞU�j2ð1ÞÞ expðk�j ð~x� x̂ÞÞdx̂

ð32Þ

h~S; ~Uþj i ¼ Cþ0j expðkþj ~xÞ �
Z 1

~x
ðgðx̂ÞUþj2ð1ÞÞ expðkþj ð~x� x̂ÞÞdx̂

ð33Þ

Because the solution must be bounded for ~x! þ1 and for
~x! �1, the two constants C0j� and C0jþ, appearing in
Eqs. (32) and (33) must be zero. In addition, it is assumed
that the function gð~xÞ tends also to zero for large j~xj. After
carrying out the integrations in Eqs. (32) and (33) the fol-
lowing results for Hð~x; ~yÞ, which is the first vector compo-
nent of ~Sð~x; ~yÞ, can be derived

Hð~x; ~yÞ ¼
X1
j¼0

bj cosð�wj~xÞ
X1
i¼1

U�i2
k~U�i k

2

ð�wjÞ2U�i1ð~yÞ
ððk�i Þ

2 þ ð�wjÞ2Þk�i

"

þ
X1
i¼1

Uþi2
k~Uþi k

2

ð�wjÞ2Uþi1ð~yÞ
ððkþi Þ

2 þ ð�wjÞ2Þkþi

#

þ bj sinð�wj~xÞ
X1
i¼1

U�i2
k~U�i k

2

�wjU
�
i1ð~yÞ

ðk�i Þ
2 þ ð�wjÞ2

"

þ
X1
i¼1

Uþi2
k~Uþi k

2

�wjU
þ
i1ð~yÞ

ðkþi Þ
2 þ ð�wjÞ2

#

þ cj sinð�uj~xÞ
X1
i¼1

U�i2
k~U�i k

2

ðujÞ
2U�i1ð~yÞ

ððk�i Þ
2 þ ðujÞ

2Þk�i

"

þ
X1
i¼1

Uþi2
k~Uþi k

2

ðujÞ
2Uþi1ð~yÞ

ððkþi Þ
2 þ ðujÞ

2Þkþi

#

� cj sinð�uj~xÞ
X1
i¼1

U�i2
k~U�i k

2

ujU
�
i1ð~yÞ

ðk�i Þ
2 þ ðujÞ

2

"

þ
X1
i¼1

Uþi2
k~Uþi k

2

ujU
þ
i1ð~yÞ

ðkþi Þ
2 þ ðujÞ

2

#

þ
X1
j¼0

bj cosð�wj~xÞ þ cj sinð�uj~xÞ ð34Þ

In Eq. (34) the following abbreviations have been used:

�wj ¼ wj
~hPeh; �uj ¼ uj

~hPeh ð35Þ

From Eq. (34) it is obvious that the temperature distribu-
tion in the fluid consists of two parts

Hð~x; ~yÞ ¼ Hhð~x; ~yÞ þHsW ð~xÞ ð36Þ

This means that the temperature distribution consists of a
part, which is the solution of the homogeneous problem



Fig. 3. Distribution of the coefficients bj for various d/h.
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and one part, which is a particular solution of the problem.
Eq. (34) shows also very nicely that the solution fulfils the
boundary condition at the wall, because for ~y ¼ 1, the
eigenfunctions Ui1 (1) in the first term on the right hand
side of Eq. (34) will vanish and therefore this term is equal
to zero.

2.3. Coupling of the temperature solutions for the wall

and the flow region

Up to now, the constants bj and cj are still unknown.
These constants can be obtained by finally coupling the
temperature solution for the solid region with the one for
the flow area. This can be achieved by satisfying the follow-
ing coupling conditions:

y ¼ h : T s ¼ T ; ks
oT s

oy
¼ k

oT
oy

ð37Þ

The two conditions given by Eq. (37) state that the temper-
ature and the heat flux at the inner wall have to be identical
between the fluid and the wall region at the inner surface.
By deriving Eq. (34) we already showed that the tempera-
tures in the solid and liquid region are equal at the inner
wall. Therefore, only the second condition in Eq. (37) has
to be satisfied. This can be done by using Eq. (34) for the
fluid region and Eq. (3) for the solid area. Because the
sin- and cos-functions appearing in these equations have
not the same frequency, they have to be expanded into a
Fourier series. This leads finally to a system of linear equa-
tions for the unknown coefficients, which has been solved
by the CGN method [16].

It should be noted, that the here presented solution
method can easily been applied to a large class of similar
problems dealing with conjugate heat transfer (e.g. heat
transfer in circular tubes, concentric annuli,. . .).

3. Results and discussion

In order to obtain solutions of the energy equation (7),
the turbulent Prandtl number and the ratio (ehx=ehy)
appearing in Eqs. (12) and (13) have to be specified. There
is a variety of different models in the literature prescribing
the turbulent Prandtl number. Especially in the case of
liquid metal flows the values for Prt given by several mod-
els are quite different. A good literature review concerning
different models for the turbulent Prandtl number can be
found in [17]. For the results presented here the extended
Kays and Crawford model [2] was used because this model
predicts very well experimental results for the Nusselt num-
bers for liquid metal flows. The reader is referred to [2] for
more details. The model for the turbulent Prandtl number
is given by

Prt¼
1

2Prt1
þCPet

ffiffiffiffiffiffiffiffiffi
1

Prt1

s
�ðCPetÞ2 1� exp � 1

CPet

ffiffiffiffiffiffiffiffiffi
Prt1
p

� �� � !�1

ð38Þ
with the quantities

Pet ¼ ~emPr; C ¼ 0:3; Prt1 ¼ 0:85þ 100

PrRe0:888
D

ð39Þ

In addition the assumption was made that the ratio of the
axial diffusivity to the diffusivity, in y-direction ehx/ehy

appearing in Eq. (12), is equal to one. This assumption
has been proven to be correct for the range of parameters
here considered. The reader is referred to Weigand et al. [9]
for more detailed information on this subject.
3.1. Numerical procedure and accuracy of the predictions

The eigenvalues kj as well as the eigenfunctions Ujð~yÞ
were calculated numerically for the eigenvalue problem
given by Eq. (24) by using a four-stage Runge–Kutta
scheme. In order to examine the accuracy of the calculated
values several calculations were carried out for laminar
flows. The eigenvalues calculated here are in very good
agreement with those of Deavours [6] for laminar flow in
a parallel plate channel. For turbulent flow, the eigenvalues
and constants coincide with those reported by Weigand [8].
The first 200 coefficients bj and cj determined by the trans-
mission conditions are shown in Figs. 3 and 4. It can be
seen, that the coefficients converge rapidly with increasing
values of j. In addition, it is obvious that the series con-
verge slower for smaller ~d ¼ d=h. This is due to the increas-
ing temperature gradient in the thinner wall with
decreasing values of ~d. For the following calculations nor-
mally 200 terms of the sums have been considered. This
guarantees a accurate prediction of the temperature field.
3.2. Laminar flow

The heat conduction within the solid wall changes the
temperature distribution at the interface between the solid
and the fluid. As Fig. 5 shows for PeD = 5 increasing values
of the wall thickness ~d lead to flatter wall temperature



Fig. 4. Distribution of the coefficients cj for various d/h.

Fig. 5. Axial distribution of the wall temperature inside the parallel plate
channel for laminar flow and various d/h.

Fig. 6. Axial distribution of the bulk–temperature for laminar flow and
various d/h.

Fig. 7. Axial distribution of the bulk–temperature for turbulent flow
(ReD = 5000,Pr = 0.05) for various d/h.

Fig. 8. Axial distribution of the bulk–temperature for turbulent flow,
Pr = 0.05, and various Reynolds numbers.

B. Weigand, G. Gassner / International Journal of Heat and Mass Transfer 50 (2007) 1097–1105 1103
distributions. For the same configuration, Fig. 6 depicts the
distribution of the bulk–temperature in the fluid defined
by
T b ¼
Z h

0

quT dy
�Z h

0

qudy ð40Þ

or in dimensionless form

Hb ¼
Z 1

0

~uð~yÞHð~x; ~yÞd~y ð41Þ

From Fig. 6 it is obvious that a thicker wall smoothes the
temperature jump, which is applied at the outer wall.

3.3. Turbulent flow

Fig. 7 shows the distribution of the non-dimensional
bulk–temperature for ReD = 5000 and Pr = 0.005. Com-
paring Fig. 7 to Fig. 6, it can be seen that the temperature
gradients in the fluid are steeper in axial direction for tur-
bulent flows. This is obvious, because of the better mixing
in the turbulent flow. This is further elucidated in Fig. 8.
Here the bulk–temperature distribution is depicted for l1/
l = 500 for various Reynolds numbers and a fixed value
of the Prandtl number Pr = 0.005. It can be seen how the
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axial heat conduction effects in the flow field diminishes for
increasing values of the Reynolds and therefore Péclet
(PeD = ReDPr) number.
3.4. Comparison with a numerical calculation

For laminar flow, ReD = 1000 and Pr = 0.005, the ana-
lytical calculation was compared to FLUENT predictions.
The used geometry was given by ~d ¼ 0:25 and l1/l = 200.
For the FLUENT calculations a structured grid with about
200,000 cells has been used. Fig. 9 shows a comparison
between analytically and numerically predicted non-dimen-
sional wall temperature distributions at the inner surface.
The prediction of the analytical model needed around
one minute on a PC, whereas the numerical calculation
with FLUENT took some hours on a SUN ULTRA 60
workstation. It can be seen that the numerically predicted
wall temperature distribution with FLUENT is generally
in good agreement with the analytically obtained wall tem-
perature. However, near the sharpest axial temperature
Fig. 9. Comparison between the numerically calculated and analytically
predicted wall temperature distribution inside the channel.

Fig. 10. Wall temperature distribution at the inner wall for various values
of the wall thickness.
gradients, the numerical calculation shows some devia-
tions. This might be caused by insufficient grid resolution
in the numerical prediction in this area.

If the wall thickness ~d ! 0, the non-dimensional tem-
perature distribution at the inner wall of the channel
should converge to the temperature jump boundary condi-
tion, which has been applied at the outer channel wall. This
has been tested for ReD = 1000, Pr = 0.005, l1/l = 200. The
results are shown in Fig. 10 for various values of the
dimensionless wall thickness ~d ¼ d=h. This might be con-
sidered as a further validation of the analytical solution.

4. Conclusions

According to the present analytical study concerning the
influence of axial heat conduction within the fluid and the
solid, the following major conclusions can be drawn:

Axial heat conduction effects in the fluid are important
for low Péclet numbers. However, if short heating sections
are considered, these effects might drastically influence the
heat transfer behaviour even for higher Péclet numbers.

The analytical predictions agree well with own numeri-
cal calculations using FLUENT.

The solution here presented is relatively simple and effi-
cient to compute.

Acknowledgements

The authors would like to acknowledge Dr. A. Haasen-
ritter for carrying out the numerical calculation with
FLUENT.
References

[1] R.K. Shah, A.L. London, Laminar Flow Forced Convection in
Ducts, Chapters V and VI, Academic Press, New York, 1978.

[2] W.M. Kays, M.E. Crawford, B. Weigand, Convective Heat and Mass
Transfer, McGraw-Hill, Inc., New York, 2004.

[3] B. Weigand, Analytical Methods for Heat Transfer and Fluid Flow
Problems, Springer, Heidelberg, 2004.

[4] C.J. Hsu, An exact analysis of low Péclet number thermal entry
region heat transfer in transversally nonuniform velocity fields,
AICHE J. 17 (1971) 732–740.

[5] E. Papoutsakis, D. Ramkrishna, H.C. Lim, The extended Graetz
problem with Dirichlet wall boundary conditions, Appl. Sci. Res. 36
(1980) 13–34.

[6] C.A. Deavours, An exact solution for the temperature distribution in
parallel plate Poiseuille flow, J. Heat Transfer 96 (1974) 489–495.

[7] S.L. Lee, Forced convection heat transfer in low Prandtl number
turbulent flows: influence of axial conduction, Can. J. Chem. Eng. 60
(1982) 482–486.

[8] B. Weigand, An exact analytical solution for the extended turbulent
Graetz problem with Dirichlet wall boundary conditions for pipe and
channel flows, Int. J. Heat Mass Transfer 39 (1996) 1625–1637.

[9] B. Weigand, T. Schwartzkopff, T.P. Sommer, A numerical investiga-
tion of the heat transfer in a parallel plate channel with piecewise
constant wall temperature boundary conditions, J. Heat Transfer 124
(2002) 626–634.

[10] B. Weigand, M. Kanzamar, H. Beer, The extended Graetz problem
with piecewise constant wall heat flux for pipe and channel flows, Int.
J. Heat Mass Transfer 44 (2001) 3941–3952.



B. Weigand, G. Gassner / International Journal of Heat and Mass Transfer 50 (2007) 1097–1105 1105
[11] B. Weigand, D. Lauffer, The extended Graetz problem with piecewise
constant wall temperature for pipe and channel flows, Int. J. Heat
Mass Transfer 47 (2004) 5303–5312.

[12] S. Mori, M. Sakakibara, A. Tanimoto, Steady heat transfer to
laminar flow in a circular tube with conduction in the wall, Heat
Transfer – Jan. Res. 3 (1974) 37–46.

[13] S. Mori, T. Shinke, M. Sakakibara, A. Tanimoto, Steady heat
transfer to laminar flow between parallel plates with conduction in the
wall, Heat Transfer – Jan. Res. 5 (1976) 17–25.
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